Copied to
clipboard

G = C3xC32:M4(2)  order 432 = 24·33

Direct product of C3 and C32:M4(2)

direct product, metabelian, soluble, monomial

Aliases: C3xC32:M4(2), C33:3M4(2), (C3xC12).9C12, C32:2C8:3C6, C12.6(C32:C4), (C32xC12).6C4, C32:3(C3xM4(2)), C4.(C3xC32:C4), C2.4(C6xC32:C4), (C4xC3:S3).10C6, (C6xC3:S3).11C4, (C2xC3:S3).8C12, C6.20(C2xC32:C4), (C12xC3:S3).18C2, (C3xC6).11(C2xC12), (C3xC32:2C8):9C2, (C32xC6).9(C2xC4), C3:Dic3.13(C2xC6), (C3xC3:Dic3).38C22, SmallGroup(432,629)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3xC32:M4(2)
C1C32C3xC6C3:Dic3C3xC3:Dic3C3xC32:2C8 — C3xC32:M4(2)
C32C3xC6 — C3xC32:M4(2)
C1C6C12

Generators and relations for C3xC32:M4(2)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe=b-1, dcd-1=b-1c-1, ece=c-1, ede=d5 >

Subgroups: 364 in 84 conjugacy classes, 24 normal (20 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2xC4, C32, C32, Dic3, C12, C12, D6, C2xC6, M4(2), C3xS3, C3:S3, C3xC6, C3xC6, C24, C4xS3, C2xC12, C33, C3xDic3, C3:Dic3, C3xC12, C3xC12, S3xC6, C2xC3:S3, C3xM4(2), C3xC3:S3, C32xC6, C32:2C8, S3xC12, C4xC3:S3, C3xC3:Dic3, C32xC12, C6xC3:S3, C32:M4(2), C3xC32:2C8, C12xC3:S3, C3xC32:M4(2)
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, C12, C2xC6, M4(2), C2xC12, C32:C4, C3xM4(2), C2xC32:C4, C3xC32:C4, C32:M4(2), C6xC32:C4, C3xC32:M4(2)

Smallest permutation representation of C3xC32:M4(2)
On 48 points
Generators in S48
(1 15 37)(2 16 38)(3 9 39)(4 10 40)(5 11 33)(6 12 34)(7 13 35)(8 14 36)(17 47 30)(18 48 31)(19 41 32)(20 42 25)(21 43 26)(22 44 27)(23 45 28)(24 46 29)
(2 38 16)(4 10 40)(6 34 12)(8 14 36)(18 31 48)(20 42 25)(22 27 44)(24 46 29)
(1 15 37)(2 38 16)(3 39 9)(4 10 40)(5 11 33)(6 34 12)(7 35 13)(8 14 36)(17 47 30)(18 31 48)(19 32 41)(20 42 25)(21 43 26)(22 27 44)(23 28 45)(24 46 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23)(2 20)(3 17)(4 22)(5 19)(6 24)(7 21)(8 18)(9 47)(10 44)(11 41)(12 46)(13 43)(14 48)(15 45)(16 42)(25 38)(26 35)(27 40)(28 37)(29 34)(30 39)(31 36)(32 33)

G:=sub<Sym(48)| (1,15,37)(2,16,38)(3,9,39)(4,10,40)(5,11,33)(6,12,34)(7,13,35)(8,14,36)(17,47,30)(18,48,31)(19,41,32)(20,42,25)(21,43,26)(22,44,27)(23,45,28)(24,46,29), (2,38,16)(4,10,40)(6,34,12)(8,14,36)(18,31,48)(20,42,25)(22,27,44)(24,46,29), (1,15,37)(2,38,16)(3,39,9)(4,10,40)(5,11,33)(6,34,12)(7,35,13)(8,14,36)(17,47,30)(18,31,48)(19,32,41)(20,42,25)(21,43,26)(22,27,44)(23,28,45)(24,46,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33)>;

G:=Group( (1,15,37)(2,16,38)(3,9,39)(4,10,40)(5,11,33)(6,12,34)(7,13,35)(8,14,36)(17,47,30)(18,48,31)(19,41,32)(20,42,25)(21,43,26)(22,44,27)(23,45,28)(24,46,29), (2,38,16)(4,10,40)(6,34,12)(8,14,36)(18,31,48)(20,42,25)(22,27,44)(24,46,29), (1,15,37)(2,38,16)(3,39,9)(4,10,40)(5,11,33)(6,34,12)(7,35,13)(8,14,36)(17,47,30)(18,31,48)(19,32,41)(20,42,25)(21,43,26)(22,27,44)(23,28,45)(24,46,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33) );

G=PermutationGroup([[(1,15,37),(2,16,38),(3,9,39),(4,10,40),(5,11,33),(6,12,34),(7,13,35),(8,14,36),(17,47,30),(18,48,31),(19,41,32),(20,42,25),(21,43,26),(22,44,27),(23,45,28),(24,46,29)], [(2,38,16),(4,10,40),(6,34,12),(8,14,36),(18,31,48),(20,42,25),(22,27,44),(24,46,29)], [(1,15,37),(2,38,16),(3,39,9),(4,10,40),(5,11,33),(6,34,12),(7,35,13),(8,14,36),(17,47,30),(18,31,48),(19,32,41),(20,42,25),(21,43,26),(22,27,44),(23,28,45),(24,46,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23),(2,20),(3,17),(4,22),(5,19),(6,24),(7,21),(8,18),(9,47),(10,44),(11,41),(12,46),(13,43),(14,48),(15,45),(16,42),(25,38),(26,35),(27,40),(28,37),(29,34),(30,39),(31,36),(32,33)]])

54 conjugacy classes

class 1 2A2B3A3B3C···3H4A4B4C6A6B6C···6H6I6J8A8B8C8D12A12B12C···12N12O12P12Q12R24A···24H
order122333···3444666···6668888121212···121212121224···24
size1118114···4299114···4181818181818224···4999918···18

54 irreducible representations

dim111111111122444444
type+++++
imageC1C2C2C3C4C4C6C6C12C12M4(2)C3xM4(2)C32:C4C2xC32:C4C3xC32:C4C32:M4(2)C6xC32:C4C3xC32:M4(2)
kernelC3xC32:M4(2)C3xC32:2C8C12xC3:S3C32:M4(2)C32xC12C6xC3:S3C32:2C8C4xC3:S3C3xC12C2xC3:S3C33C32C12C6C4C3C2C1
# reps121222424424224448

Matrix representation of C3xC32:M4(2) in GL4(F73) generated by

64000
06400
00640
00064
,
1000
0100
481380
1820064
,
64000
0800
54080
034064
,
5460043
1814300
59115918
31466019
,
02700
46000
3267046
632270
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[1,0,48,18,0,1,13,20,0,0,8,0,0,0,0,64],[64,0,54,0,0,8,0,34,0,0,8,0,0,0,0,64],[54,18,59,31,60,14,11,46,0,30,59,60,43,0,18,19],[0,46,32,6,27,0,67,32,0,0,0,27,0,0,46,0] >;

C3xC32:M4(2) in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes M_4(2)
% in TeX

G:=Group("C3xC3^2:M4(2)");
// GroupNames label

G:=SmallGroup(432,629);
// by ID

G=gap.SmallGroup(432,629);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,3,84,365,176,80,14117,362,18822,1203]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1,d*c*d^-1=b^-1*c^-1,e*c*e=c^-1,e*d*e=d^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<