direct product, metabelian, soluble, monomial
Aliases: C3×C32⋊M4(2), C33⋊3M4(2), (C3×C12).9C12, C32⋊2C8⋊3C6, C12.6(C32⋊C4), (C32×C12).6C4, C32⋊3(C3×M4(2)), C4.(C3×C32⋊C4), C2.4(C6×C32⋊C4), (C4×C3⋊S3).10C6, (C6×C3⋊S3).11C4, (C2×C3⋊S3).8C12, C6.20(C2×C32⋊C4), (C12×C3⋊S3).18C2, (C3×C6).11(C2×C12), (C3×C32⋊2C8)⋊9C2, (C32×C6).9(C2×C4), C3⋊Dic3.13(C2×C6), (C3×C3⋊Dic3).38C22, SmallGroup(432,629)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C3×C3⋊Dic3 — C3×C32⋊2C8 — C3×C32⋊M4(2) |
Generators and relations for C3×C32⋊M4(2)
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe=b-1, dcd-1=b-1c-1, ece=c-1, ede=d5 >
Subgroups: 364 in 84 conjugacy classes, 24 normal (20 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C3×C6, C3×C6, C24, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C3×M4(2), C3×C3⋊S3, C32×C6, C32⋊2C8, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, C32⋊M4(2), C3×C32⋊2C8, C12×C3⋊S3, C3×C32⋊M4(2)
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C12, C2×C6, M4(2), C2×C12, C32⋊C4, C3×M4(2), C2×C32⋊C4, C3×C32⋊C4, C32⋊M4(2), C6×C32⋊C4, C3×C32⋊M4(2)
(1 15 37)(2 16 38)(3 9 39)(4 10 40)(5 11 33)(6 12 34)(7 13 35)(8 14 36)(17 47 30)(18 48 31)(19 41 32)(20 42 25)(21 43 26)(22 44 27)(23 45 28)(24 46 29)
(2 38 16)(4 10 40)(6 34 12)(8 14 36)(18 31 48)(20 42 25)(22 27 44)(24 46 29)
(1 15 37)(2 38 16)(3 39 9)(4 10 40)(5 11 33)(6 34 12)(7 35 13)(8 14 36)(17 47 30)(18 31 48)(19 32 41)(20 42 25)(21 43 26)(22 27 44)(23 28 45)(24 46 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23)(2 20)(3 17)(4 22)(5 19)(6 24)(7 21)(8 18)(9 47)(10 44)(11 41)(12 46)(13 43)(14 48)(15 45)(16 42)(25 38)(26 35)(27 40)(28 37)(29 34)(30 39)(31 36)(32 33)
G:=sub<Sym(48)| (1,15,37)(2,16,38)(3,9,39)(4,10,40)(5,11,33)(6,12,34)(7,13,35)(8,14,36)(17,47,30)(18,48,31)(19,41,32)(20,42,25)(21,43,26)(22,44,27)(23,45,28)(24,46,29), (2,38,16)(4,10,40)(6,34,12)(8,14,36)(18,31,48)(20,42,25)(22,27,44)(24,46,29), (1,15,37)(2,38,16)(3,39,9)(4,10,40)(5,11,33)(6,34,12)(7,35,13)(8,14,36)(17,47,30)(18,31,48)(19,32,41)(20,42,25)(21,43,26)(22,27,44)(23,28,45)(24,46,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33)>;
G:=Group( (1,15,37)(2,16,38)(3,9,39)(4,10,40)(5,11,33)(6,12,34)(7,13,35)(8,14,36)(17,47,30)(18,48,31)(19,41,32)(20,42,25)(21,43,26)(22,44,27)(23,45,28)(24,46,29), (2,38,16)(4,10,40)(6,34,12)(8,14,36)(18,31,48)(20,42,25)(22,27,44)(24,46,29), (1,15,37)(2,38,16)(3,39,9)(4,10,40)(5,11,33)(6,34,12)(7,35,13)(8,14,36)(17,47,30)(18,31,48)(19,32,41)(20,42,25)(21,43,26)(22,27,44)(23,28,45)(24,46,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33) );
G=PermutationGroup([[(1,15,37),(2,16,38),(3,9,39),(4,10,40),(5,11,33),(6,12,34),(7,13,35),(8,14,36),(17,47,30),(18,48,31),(19,41,32),(20,42,25),(21,43,26),(22,44,27),(23,45,28),(24,46,29)], [(2,38,16),(4,10,40),(6,34,12),(8,14,36),(18,31,48),(20,42,25),(22,27,44),(24,46,29)], [(1,15,37),(2,38,16),(3,39,9),(4,10,40),(5,11,33),(6,34,12),(7,35,13),(8,14,36),(17,47,30),(18,31,48),(19,32,41),(20,42,25),(21,43,26),(22,27,44),(23,28,45),(24,46,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23),(2,20),(3,17),(4,22),(5,19),(6,24),(7,21),(8,18),(9,47),(10,44),(11,41),(12,46),(13,43),(14,48),(15,45),(16,42),(25,38),(26,35),(27,40),(28,37),(29,34),(30,39),(31,36),(32,33)]])
54 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | ··· | 3H | 4A | 4B | 4C | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 8A | 8B | 8C | 8D | 12A | 12B | 12C | ··· | 12N | 12O | 12P | 12Q | 12R | 24A | ··· | 24H |
order | 1 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 18 | 1 | 1 | 4 | ··· | 4 | 2 | 9 | 9 | 1 | 1 | 4 | ··· | 4 | 18 | 18 | 18 | 18 | 18 | 18 | 2 | 2 | 4 | ··· | 4 | 9 | 9 | 9 | 9 | 18 | ··· | 18 |
54 irreducible representations
Matrix representation of C3×C32⋊M4(2) ►in GL4(𝔽73) generated by
64 | 0 | 0 | 0 |
0 | 64 | 0 | 0 |
0 | 0 | 64 | 0 |
0 | 0 | 0 | 64 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
48 | 13 | 8 | 0 |
18 | 20 | 0 | 64 |
64 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
54 | 0 | 8 | 0 |
0 | 34 | 0 | 64 |
54 | 60 | 0 | 43 |
18 | 14 | 30 | 0 |
59 | 11 | 59 | 18 |
31 | 46 | 60 | 19 |
0 | 27 | 0 | 0 |
46 | 0 | 0 | 0 |
32 | 67 | 0 | 46 |
6 | 32 | 27 | 0 |
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[1,0,48,18,0,1,13,20,0,0,8,0,0,0,0,64],[64,0,54,0,0,8,0,34,0,0,8,0,0,0,0,64],[54,18,59,31,60,14,11,46,0,30,59,60,43,0,18,19],[0,46,32,6,27,0,67,32,0,0,0,27,0,0,46,0] >;
C3×C32⋊M4(2) in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes M_4(2)
% in TeX
G:=Group("C3xC3^2:M4(2)");
// GroupNames label
G:=SmallGroup(432,629);
// by ID
G=gap.SmallGroup(432,629);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,3,84,365,176,80,14117,362,18822,1203]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1,d*c*d^-1=b^-1*c^-1,e*c*e=c^-1,e*d*e=d^5>;
// generators/relations